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A constant-pressure axisymmetric turbulent boundary layer along a circular 
cylinder of radius a is studied a t  large values of the frictional Reynolds number 
a+ (based upon u) with the boundary-layer thickness 6 of order a. Using the 
equations of mean motion and the method of matched asymptotic expansions, 
it is shown that the flow can be described by the same two limit processes (inner 
and outer) as are used in two-dimensional flo-w. The condition that the two 
expansions match requires the existence, at the lowest order, of a log region in 
the usual two-dimensional co-ordinates (u+, y+). Examination of available experi- 
mental data shows that substantial log regions do in fact exist but that the 
intercept is possibly not a universal constant. Similarly, the solution in the outer 
layer leads to a defect law of the same form as in two-dimensional flow; experi- 
ment shows that the intercept in the defect law depends on &/a. It is concluded 
that, except in those extreme situations where a+ is small (in which case the 
boundary layer may not anyway be in a fully developed turbulent state), the 
simplest analysis of axisymmetric flow will be to use the two-dimensional laws 
with parameters that now depend on a+ or 6/a as appropriate. 

1. Introduction 
The study of the effects of transverse curvature on turbulent boundary layers 

is of interest in numerous engineering applications. Some examples are axial flow 
along slender bodies of revolution, ship models and other three-dimensional 
objects. The effects of transverse curvature may be expected to become significant 
when the thickness 6 of the boundary layer is comparable to or larger than a 
typical transverse dimension (say a )  of the body. 

The simplest problem of this class, where transverse curvature effects are 
important, is that of the axisymmetric turbulent boundary layer along a long 
circular cylinder with zero pressure gradient. This problem has been extensively 
studied in the literature (Richmond 1957; Yu 1958; Yasuhara 1959; Rao 1967a; 
Chin, Hulesbos & Hunnicutt 1967; Willmarth & Yang 1970; Rao & Keshavan 
1972), but there is no agreement yet regarding the appropriate similarity laws for 
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Author(s) Proposed law of wall in log region Parameter 

Classicd two- U+ = A ,  In y+ + A ,  
dimensional 
law 

A,, A ,  universal 

Richmond u+ = A ,  In [y+( 1 +y+/2a+)] + A ,  A,, A ,  same as in two-dimensional law 
(1957) 
YU (1958) U, = A , h y + + A ,  A,  universal and A ,  = A,(R,) 
Chin et al. U+ = A,  In y++A, A ,  and A ,  functions of R, 

(1967) 
Rao & U+ = A ,  In [a+ h (1 +y+/a+)l+A, A ,  = A,@,) and A ,  = A,(a+, R,) 
Keshavan 
(1972) 

TABLE 1. Different proposals for velocity distribution in log region of the wall layer 

the mean flow. Particular attention has been given by all workers to the wall law 
in the overlap or ‘log’ region; the different proposals made for the velocity 
distribution in this region are shown in table 1. 

With the exception of Yu (1958) and Chin et al. (1967)’ all authors have assumed 
that the classical two-dimensional law of the wall is in need of modification, which 
they propose to achieve by altering the argument of the similarity function (but 
not the function itself). For example, Richmond (under Coles’s guidance) has 
proposed that, if the two-dimensional wall law can be written as 

’+ = 4 (Y+) (’+ = ‘lu7, Y+ = YUT/’)  (1) 

(where U, is the friction velocity and U+ and y+ the usual wall variables), the 
appropriate form in axisymmetric flow involves only a change in the argument 
of the function Fl: 

(2) 

where a+ = aUT/v is the frictional Reynolds number. Richmond’s own experi- 
ments appeared to support (2); later Yasuhara (1959) and Willmarth & Yang 
(1970) also presented their measurements in the above form with results quite 
similar to those of Richmond. 

Rao (1967~) has proposed that the axisymmetric wall variable is the one 
that will preserve the (linear) form of the law of the wall in the viscous sublayer. 
This suggests that in axisymmetric flow 

u+ = -F; [Y+ (1 +y+Pa+)l, 

u+ = 31 [a+ ln ( 1 + Y+Ia+)I. (3) 

The experiments of Rao & Keshavan (1972) showed that Fl did possess a log 
region where (3) could be written as 

u+ = A,lnta+ln(l +y+/a+)l+A,, 

but the quantities A ,  and A ,  could not be considered as universal constants; in 
fact they found that A ,  = Al(Ra) and A ,  = A,(u+,Ra), where R, = U,a/v is 
the Reynolds number based on the free-stream velocity Urn. 

Coles (1970) has pointed out that Richmond’s co-ordinates reflect the effects 
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of transverse curvature on the continuity equation, given Coles’s streamline 
hypothesis; while the co-ordinate of Rao reflects the effects of transverse curva- 
ture on the momentum equation. 

Less attention has been paid to describing the flow in the outer region of 
axisymmetric turbulent boundary layers. Rao & Keshavan (1972) have found 
that for a given R, the outer-layer velocity defect (Urn - U)/U7 yields similarity in 
terms of the variable r+, based on the radius r = a + y.  However, their wall and 
defect laws cannot be matched and as a result a skin-friction law does not follow. 
Thus Rao’s law is not complete. On the other hand Yu (1958) and Chin et al. (1967) 
have presented their measurements in classical two-dimensional defect-law 
co-ordinates 

(Urn - wu7 = G(Y/8) 
N A31n(y/8)+A4, y / 8 <  1. 

Yu (1958) found that A, is a universal constant and A ,  = A4(R,) while Chin et 
al. (1967) found that neither A, nor A, is a universal constant. 

When compared with two-dimensional flow, the properties of the axisymmetric 
turbulent boundary layer with zero pressure gradient may be expected to depend 
on two additional non-dimensional parameters, namely a+ and 81.. Values of 
these parameters covered in the various experiments reported in the literature 
are shown in table 2. It may be seen that, exckpt in some of Richmond’s experi- 
ments, a+ is larger than 30 and &/a is between 0.1 and 12. S t  therefore appears 
that for the bulk of these flows it should be useful to consider the limit a+ 9 1 
and 8/a of order unity. The main aim of the present work is to formulate an 
asymptotic theory valid under such conditions. 

Before making a detailed analysis, we note here one immediate consequence 
of the above limit. It is well known that, in general, the total stress 7t ( =viscous 
+Reynolds) does not remain constant in the inner region of an axisymmetric 
turbulent layer, but that the stress moment ~7~ does. Thus 

r7, = a7, or (1 + y+/a,)7, = rw. (4) 

(5) 

For large values of a+ the expression (4) can be expanded as 

7t = 7,( 1 - y+/a+. . .). 

In  the sublayer, where the viscous stress is dominant, the velocity profile is easily 
found by integration to be 

u+ = a+ 1n (1 + y+/a+) 
= y+-y2,/a+ ... for a+ 9 1. 

The corresponding sublayer expression for constant-pressure two-dimensional 
boundary layers is (Rotta 1962, p. 59) 

u+ = Y+ + O(Y3.  

Thus, if a+ is large, to order l/a+ the total stress in an axisymmetric wall layer can 
still be taken as constant, and consequently the sublayer profile as linear. In  other 
words, for large values of a+ the effects of transverse curvature on the inner layer 
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Author 

Richmond (1957) 

Yu (1959) 

Willmarth & Yang (1970) 

Rao & Keshavan (1972) 

R, 
40200 
40200 
40200 

263 
263 

94 
16250 
30740 
45060 

134000 
134000 
70200 
70200 

2 1 8600 

106000 

3940 

1620 

1420 

1320 

826 

425 

$/a 
16 
18 
20 

1600 
1600 
1600 

96 
96 
84 

192 
256 
192 
256 

5-3 
7.7 

12 
14.2 
16.4 
6.3 
7.7 

12 
14.2 
16.4 
24 
68 
92 

124 
160 
48 

136 
184 
248 
320 
24 
68 
92 

124 
160 
48 

136 
184 
248 
320 
96 

272 
365 
499 
640 
96 

272 
365 
499 
640 

a+ 
1615 
1580 
1625 

12.5 
12.8 
5 

751 
1150 
1630 
4710 
4635 
2655 
2695 

10500 
9800 
9000 
8700 
8500 
6350 
5000 
4610 
4510 
4380 
262 
212 
196.6 
180 
174 
127.8 
93.5 
92 
84 
79.5 

104.6 
76 
70 
62 
51.8 

102.4 
78.9 
71.9 
66.5 
62.2 
52.8 
34.1 
28.2 
26.1 
22.5 
38.4 
29.2 
27.2 
26.6 
23-1 

81. 
1.18 
1.62 
1-84 

46 
72 
64 
1.6 
1.6 
1.4 
2 

2.16 
2-56 
2-84 
0.193 
0-216 
0.31 
0.36 
0.346 
0.227 
0.237 
0-366 
0.436 
0.397 
2.08 
2.36 
3.02 
3.18 
4.13 
4 
4-65 
6.61 
6.11 
6.58 
2.63 
2.82 
3.1 
3.57 
3.72 
6 
5.3 
6.3 
6.26 
6.9 

10-82 
10.76 
11.46 
10.9 
11.56 
8.16 

11-30 
9.75 

10.65 
11.6 

TABLE 2. Values of a+ and Sla covered in various experiments 
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must be capable of being regarded as higher-order perturbations to a basically 
two-dimensional flow. A consequence of this argument is that the measurements 
quoted above must show a logarithmic region when plotted in two-dimensional 
co-ordinates. We shall show that this is indeed the case in spite of the fact that 
the validity of the two-dimensional wall and defect laws in axisymmetric flow 
has been widely disputed. 

2. Analysis 
Consider steady axially symmetric turbulent flow of an incompressible fluid 

along the convex surface of a circular cylinder with zero pressure gradient. The 
boundary-layer equations for the mean motion are 

Here x is the streamwise co-ordinate, y the normal co-ordinate measured from 
the surface and U and V are the mean velocity components in the x and y 
directions respectively. The boundary conditions are 

U = V = T = O  at y = O ,  

U-turn, 7 3 0  as y+m.  

The momentum integral obtained from above set of equations is 

The momentum thickness 8 is related to momentum length 8, by 

' 8, = e(i +e/ea). ( l o b )  

We now study the two limits (inner and outer) and the two corresponding 
asymptotic expansions for large values of the Reynolds number a,. 

2.1. Outer layer 
It does not seem to have been realized in earlier work on the asymptotics of 
turbulent shear flows that an explicit estimate of flow variations in the stream- 
wjse direction is both necessary and useful. If L is the scale of these variations, 
we may infer from the momentum integral (10) that L = O(8, UZ,/U,Z). Defining 

( 11 a-c) 

U = Urn", V = (6/L)UrnV, T = U:T, (12a-c) 
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and introducing these variables into the equations of motion (7) and ( S ) ,  we get 

Gr = 0, 
a0 s x a O  aV 8 -- Y--+- +- ax S a y  aY a+SY  

Here E is a parameter representing the momentum defect, defhed by 

= ells. ( 1 3 4  
For large values of a+ the momentum defect may be expected to be much less 

than unity. Equations (13a, b)  then show that the velocity profile at  any point 
in the outer region may be written in functional form as 

u- = (Urn - U)/€  

= u-(s, Y ,  S/a, E & ~  EUrn/S+ q). (14) 

AS a+ -+ co and 8/a = O( 1) we consider the asymptotic expansions 

0 = l+e[?X(X,Y;S/a)+E(X,R)U,(X,  Y;S/u)+ ...I, 

T = T,(X, Y ; S / a ) + E ( X , R ) T , ( X ,  Y ; 8 / u ) +  ... . 
P = s[V,(X,Y;S/a)+E(x,R)V,(S,  Y ;S /a )+  ...I, )- (15) 

Here E (3, R)  and E ( X ,  R )  are gauge functions to be determined. The lowest-order 
equations are therefore 

If (as we shall show in $2.3) the terms multiplying ex/€ can be omitted, these 
equations are identical to those for an axisymmetric wake (Townsend 1956). 

2.2. Inner layer 

We may introduce the following inner variables :t 

x = I;$, y+ = yu,/v, 

Substituting these variables in the equation of continuity (7) the relation between 
f and g is obtained as 

(19) 
v , X  Y+ 

(a++y+)g = - 0 [@++Y+)fxu+ + y_(Y+fv+)v+]dY+. 

t For streamwise variations in the inner region a length scale 9 different from L may 
be introduced, but the inner equation (20) shows that this length scale occurs in terms which 
are of very much higher order, suggesting that the streamwise variations in the inner 
region are very much smaller than those in the outer region. 
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The equation (8) for the axial momentum reduces to 

Equation (20) suggests that the functional form for a typical variable, say f, is 

f = f(X, y+, aT1, -G1, v,,lu,L+). (21) 

The inner asymptotic expansions are now written as 

(22) 
f = f i + A f i +  ..., 
g = g1+ Ag2 + * - ., 
? =Tl+A72+.. .  . 

Here A is a gauge function yet to be determined. The equations for the leading 
approximation 

are thus identical to those for two-dimensional flows, and show that the total stress 
in the wall layer remains constant. 

(23) fiv++y+U+ +71v+ = 0 

2.3. Matching 

According to what may be called the Millik-an-Kolmogorov principle, at suffi- 
ciently large Reynolds numbers the inner and outer solutions must match; thus 

lim U, U;l[l +sU,(X, Y ) ]  N lim flu+ (X, y+). (24) 
Y-0 y++m 

As B, 3 0 0 ,  the first term on the left-hand side approaches infinity and the match- 
ing requires that the right-hand side be unbounded for large y+, say like the 
function S(y+). This function can be differentiated with respect to y (note that 
this procedure, adopted by Millikan (1938), would be invalid if P(y+-+co) did 
not diverge; see Afzal & Narasimha 1976) to get 

If we choose &&?JUT to be of order unity, say 

E = v,/u*, 
then the matching condition (25 )  implies that each side of it approaches a constant 
independent of Y and y+, say l/K, so that 

U,=K-l lnY-D as Y-tO, (27a) 

P =K-lIny++C as y++o3. (27b)  

On matching the tangential component of the velocity we get the skin-friction 

(28) 
law 

It is interesting to note that from (1 1 c) and (26) it  follows that 

S/L = u,/u,. (29) 

Um/UT = K-1 In S+ + C + D. 
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In  Millikan’s (1938) overlap argument the dependence of the constants C and 
Din  (27) and (28) on the parameters of the problem remains hidden (Coles 1971). 
The equations for the outer layer, (16) and (17), contain the parameter S/u and 
thus the coefficient D could depend upon 81.. From a similar argument for the 
inner layer it follows that C is a universal constant. 

To gain insight into the structure of higher-order effects in the outer and inner 
layers, we now compare the orders of various parameters in the full governing 
equations. Let us first consider the outer-layer equation ( la) ,  which shows 
dependence on the two parameters ex/s  and S,l. From the skin-friction law (28) 
we get 

The ratio of the two parameters is 

Ex/€& = o ( v / u m ~ ) y  (31) 

which approaches zero as R, becomes large. Thus the parameter E x / €  is dominant 
compared with and the gauge function E in the outer expansions (15) is taken 
to be 

E = 8. (32) 

The inner-layer equation (21) contains three parameters: aT1, LCl and V,,/V, L+. 
From relation (30) it  is obvious that of the last two L+l is the dominant one. We 
now estimate the orders of magnitude of the first two parameters. The ratio of 
L T ~  to a ~ l  can easily be shown to  be 

LT1/aT1 = m/S. (33) 

A t  large values of the Reynolds number E 1, and thus for the present case when 
S/u is of order unity a,l is the dominant parameter compared with h ~ l .  Thus in 
the inner asymptotic expansions (22) the gauge function is chosen to be 

A = I/+ (34) 

This implies that in the inner layer the effects of transverse curvature are much 
more important than those of inertia. 

3. Results and discussion 
The main results for the velocity profile are 

u 1  
- = - h y + + C + O  

and the skin-friction law is 

(35) 

(36) 
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FIGURE 1. Law of the wall: Richmond's measurements. 
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FIUIJRE 2. Law of the wall: Willmarth & Yang's measurements. 
R,  = 70200: 0, x = 24ft; X ,  x = 32ft. R, = 134000: 0,  x = 24ft; +, x 3 32ft. 
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FIGURE 3. Law of the wall: Rao & Keshavan’s measurements. (a) R,  = 3940. (b) R, = 825. 
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heavy curve in (a) represents the sublayer equation (6). 
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The work of Yu (1958) and Chin et al. ( I  967) shows that when their measure- 
ments are plotted in two-dimensional wall-law co-ordinates a logarithmic region 
is clearly visible. To check further the present result (35) data of Richmond (1 957) 
and Willma,rth & Yang (1970) are plotted in the wall-law co-ordinates of (35) in 
figures 1 and 2 .  The measurements of Rao & Keshavan (1972) for Ra = 3940 and 
825 are displayed in figures 3(a)  and (b)  while those for other values of the 
Reynolds number are shown in Afzal & Narasimha (1975). All these figures also 
show the existence of a substantial logarithmic region. Thus all the available 
measurements are overwhelmingly in favour of a logarithmic law in classical 
two-dimensional co-ordinates. 

As no reliable values of the skin friction from direct measurements are available 
the determination of the constants in the wall law is plagued by uncertainties in 
cf. Each author has deduced the skin friction by a different indirect method. For 
example, Yu (1958) and Willmarth & Yang (1970) determined the wall shear 
from a Preston tube, using the calibrations, respectively, of Landweber & Siao 
(1958) and Patel (1965). Richmond obtained the wall friction by fitting data to 
his wall law ( 2 ) .  However, Rao & Keshavan (1972) found that in some of Rich- 
mond’s flows the momentum thickness increased downstream, suggesting that 
the flow may not have been axisymmetric. Chin et al. (1967) and Rao & Keshavan 
(1972) obtained the skin friction from the momentum integral by using the 
measured streamwise momentum thickness. This method involves a differentia- 
tion which is not altogether reliable. For some of the above measurements Patel 
(1973) has deduced the wall friction from Clauser’s plot (which applies strictly to 
the usual flat-plate wall law) on the basis of the following argument. As the 
departure of the axisymmetric waIl flow from the two-dimensional law is gradual, 
being much smaller in the sublayer and mixing region than at  larger y,, a reason- 
able estimate of the friction can be obtained from Clauser’s plot provided that due 
emphasis is placed on experimental points in the sublayer and mixing region. 
Patel has in this way determined the friction for five experiments of Rao & 
Keshavan and has shown that in two of them his vaIue differs from theirs by as 
much as 20%. We believe that a t  present Patel’s procedure is the most rational 
and will therefore adopt here the cf values derived by him. 

Before we study the dependence of the intercept on various parameters, we 
first make a few remarks about the data of Rao & Keshavan, particularly those 
taken a t  earlier stations. The experiments a t  R, = 218500 and 106000 were 
conducted using a 5-5in. diameter model 6 f t  long with an ogival nose-piece of 
slenderness ratio 3: 1. The boundary layer was artificially tripped by emery paper 
at a distance of about a third of the cylinder’s radius from the apex and by a 
tripping wire ahead of it;  and the first and last measuring stations were a t  only 
x/a = 5.2 and 16.3 respectively. In  view of the known slow recovery of boundary 
layers from the effect of tripping devices (Coles 1962), it is likely that at  least a t  
the initial stations the boundary layer may not yet have achieved a natural state. 
In  fact the boundary layers were also artificially tripped for all measurements of 
Rao & Keshavan in the range 425 < R, < 3940. In  some cases (figure 3) the 
velocity profile shows a negative wake component on a wall-law plot. These 
figures show that, for a given R,, as the flow develops in the downstream direction 
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the negative wake component disappears (the profile at this location is called the 
marginal profile by Rao & Keshavan); a positive wake appears further down- 
stream. Furthermore the disappearance of the negative wake at larger values of 
R, is very rapid. I n  connexion with two-dimensional flows Coles (1962) has 
discussed the appearance of such marginal profiles at low values of the 
momentum Reynolds number. Furthermore, i t  has been argued by several 
workers (Rao & Keshavan 1972; Patel 1973) that the effects of transverse 
curvature are qualitatively similar to those of a favourable pressure gradient. 
Therefore, if the curvature effects are stronger there is a possibility of 
relaminarization of axisymmetric turbulent boundary layers. Different criteria 
have been proposed by various workers. For example Rao & Keshavan (1972) 
suggested that an axisymmetric turbulent boundary layer wiIl persist if 
Ra > 16000 ana thatbelow %s value relaminarizabion may occur for some Rz. 
This value is close to the value 11 000 calculated by Rao (19673) below which all 
small disturbances to laminar axisymmetric boundary layers will damp out. 
On the other hand Patel (1973) suggested that for a, < 28, for all R,, 
axisymmetric boundary layers must be regarded as transitional. The measure- 
ments of fully developed pipe flow of Patel & Head (1969) show that for 
R, < 3000 (or equivalently a+ < 106) the flows are transitional. These 
considerations suggest that many of the low R, experiments of Rao & 
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FIUURE 6. Velocity defect law: Richmond's measurements. 
R, = 40200. X ,  z = 8 ft; .,z = 10 ft. 

Keshavan (1972) and Richmond (1957) should be considered suspect as the flow 
may not have been in a fully turbulent state. Thus for the determination of 
constants in the wall law we use measurements at stations further downstream 
(so as to ensure that tripping effects have become small) and larger values of R, 
(to ensure that the boundary layer is not transitional). 

Examination of the above data shows that the intercept of the log law is 
possibly not a universal constant. The present theory shows that constants in 
the wall law (35) have to be universal if a+ is sufficiently large. Thus any departure 
of additive terms in the wall law from their asymptotic values could be regarded 
as a higher-order effect. An inspection of the relations (21), (22) and (34) govern- 
ing the inner flow suggests that the higher-order effects are of order l/a+. Further- 
more, the dependence of additive terms in the wall law for axisymmetric boundary 
layers is, in a sense, similar to that observed by Pate1 & Head (1969) in their 
measurements of fully developed pipe flow. It has been shown by Afzal & Yajnik 
(1973) that the appropriate wall law for such a flow is 

u+ = f ( Y + >  I/.+) 

and that the intercept is a function of l/a+. For small values of l/a+ the intercept 
B in pipe flows is given by (Afzal & Yajnik 1973) 

B = 5+236/a+. (38) 

The values of the intercept B obtained from various sources are plotted against 
l/a+ in figure 4. In  the same figure the correlation (38) for pipe flow is also shown. 
The figure shows that the data from the various sources lie very close to the 
results for pipe flow. The scatter in the data is such that it is not possible to assert 
that B does increase with I/.+, but the measurements would not be inconsistent 
with (38) either. 

In  contrast to the wall law, not much attention has been paid to describing the 
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flow in the outer region of axisymmetric turbulent boundary layers. The measure- 
ments of Yu (1958) and Chin et al. (1967), when plotted in two-dimensional 
defect-law co-ordinates, show a logarithmic region. Rao & Keshavan (1972), on 
the basis of their own measurements, have however concluded that the two- 
dimensional defect-law co-ordinates do not show any promise. Here, in figures 
5-7 we have displayed data from various sources (Richmond 1957; Willmarth & 
Yang 1970; Rao & Keshavan 1972) in two-dimensional defect-law co-ordinates 
and i t  is interesting to note the clear existence of a substantial logarithmic region. 
Thus all the available measurements are again overwhelmingly in favour of a 
logarithmic law in classical defect co-ordinates. It is, however, also clear from 
these plots that the value of the intercept D is not a universal constant. The 
present theory suggests that to lowest order D could be a function of S/a. To check 
this, the values of the intercept from various sources mentioned above and Singh 
(1973) are plotted against S/a in figure 8. The figure shows that within the 
accuracy of the data D correlates well with S/a. As S/a+O the value of D 
approaches the flat-plate value. 

Thus from the above it follows that the classical form of two-dimensional wall 
and defect laws can describe axisymmetric turbulent boundary layers provided 
that l/a+ and S/a are small. For moderately small values of l/a+ and for S/a of 
order unity, the intercept in the logarithmic wall law depends on l/a+ and that 
in the defect law on Sla. 
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